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Abstract

Nowadays the amount of generated digital data is grow-
ing faster and faster in a broad spectrum of application
domains such as biomedical and biological imaging, doc-
ument processing, remote sensing, video surveillance, etc.
Processing such big data encourages efficient data structure
and powerful processing algorithms. The n-dimensional
generalized map is a useful structure that completely rep-
resents the topological structure of an image. Their ad-
vantages have been widely proved in the literature. Nev-
ertheless, the main disadvantage of these structures is the
high rate of memory requirement. This paper, first pro-
poses an efficient method that implicitly encodes two of the
three involutions in the 2-Gmap that dramatically reduces
the amount of required memory. Second, it introduces a new
formalism to define and detect redundant 1-cells (edges), in
the 2-Gmap. Removing such redundant information the re-
duced memory is further decreased approximately by half.
Finally, experiments show the advantage of the proposed
method in a real database of high-resolution X-ray micro-
tomography (µCT ) and fluorescence microscopy.

1. Introduction

We are live in the era of Big Data. In 2018 it was stated
”Data volumes are exploding; more data has been created
in the past two years than in the entire history of the hu-
man race [9].” Nowadays, the data volume and velocity is
growing even faster [15]. Processing such a huge amount
of data requires efficient data structures and efficient pro-
cessing algorithms. In addition, currently we are work-
ing on the Water’s gateway to heaven project1 dealing with
high-resolution X-ray micro-tomography (µCT ) and fluo-
rescence microscopy. The size of the labeled cross slice of
a leaf scan is more than 2000 in each dimension. To cor-
rectly preserve the structure of the elements in the image,
in this paper we employ 2-dimensional generalized map (2-

1https://waters-gateway.boku.ac.at/

Gmap) [13].
Although the n-Gmap is an efficient structure for de-

scribing an n-dimensional orientable or non-orientable
quasi-manifold [13] it suffers from requiring a huge amount
of memory storage. To remedy this problem, this paper first
introduces an efficient encoding to implicitly preserve ele-
ments of the 2-Gmap without taking extra space of memory.
Second and more important, it introduces a new formal-
ism to define and detect redundant elements of the 2-Gmap
structure of the multi-labeled image.

By removing the redundant elements, the resulted 2-
Gmap not only has the same structure to the original one but
it would be also computationally more efficient to be used
in upcoming processing. In particular, to process both gen-
eral and local information of the structure we use the irreg-
ular graph pyramid. Removing such redundant elements in
the hierarchical structure, simplifies and speeds up the con-
struction of the pyramid. In this paper we are dealing with
multi-labeled images. The multi-labeled image is defined as
an image consists of different connected components (CCs)
where each CC has a unique label (color).

1.1. Irregular Pyramid

Pyramids are powerful and efficient hierarchical struc-
tures in pattern recognition that were introduced by Rosen-
feld [16]. They are able to propagate local information from
the base level into global and abstract information at top of
the pyramid [14]. Irregular image pyramids consist of a se-
ries of successively smaller images constructed over a base
image [10]. By presenting a digital image as a 4-adjacent
neighborhood graph, each pixel in image P corresponds to
a vertex v ∈ V of the graph G = (V,E). Each edge,
e ∈ E, of the graph encodes the neighborhood relation-
ship between pixels. In addition, the gray-value of a pixel
g(p) becomes an attribute of the corresponding vertex v,
g(v) = g(p) and the contrast(e) = |g(u)− g(v)| becomes
an attribute of an edge e(u, v) where u, v ∈ V . In an ir-
regular pyramid, in order to produce the smaller graph at
the upper level, two operations are performed at each level:
edge contraction and edge removal [5, 6]. The former re-
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moves one edge and one vertex while preserving the con-
nectivity of a graph and the latter removes one edge. Ver-
tices (edges) of the current level that will be disappeared
at the upper level are called non-surviving vertices (edges)
while those that remain at the upper levels are called sur-
viving vertices (edges). The decision of which vertices (and
consequently which edges) must be selected as the surviv-
ing vertices (edges) is taken by introducing the contraction
kernel (CK).

Definition 1 (Contraction Kernel (CK)) A CK is a tree
consisting of a surviving vertex as its root and some non-
surviving neighbors with the constraint that every non-
survivor can be part of only one CK.

An arrow over an edge is commonly used to indicate the
direction of contraction, i.e., from non-survivor to survivor
vertex. Using the 4-adjacent neighborhood relationship re-
sults in the plane graph. A plane graph is a graph embedded
in the plane such that its edges intersect only at their end-
points [18]. In a plane graph, a face is the connected spaces
between edges and vertices where its degree is the number
of edges bounding the face. A face bounded by a cycle is
called an empty face.

1.2. Gmap

An n-dimensional generalized map (n-Gmap) is a
combinatorial data structure allowing to describe an n-
dimensional orientable or non-orientable quasi-manifold
with or without boundaries [13]. An n-Gmap is defined by
a finite set of darts D on which act n + 1 involutions2 αi,
satisfying composition constraints of the following defini-
tion [7]:

Definition 2 (n-Gmap) An n-dimensional generalized
map, or n-Gmap, with 0 ≤ n is an (n + 2)-tuple
G = (D, α0, ..., αn) where:
1. D is a finite set of darts,
2. ∀i ∈ {0, ..., n}: αi is an involution on D
3. ∀i ∈ {0, ..., n − 2}, ∀j ∈ {i + 2, ..., n}: αi ◦ αj is an
involution.

A 2-Gmap (D, α0, α1, α2) represents the structure of a set
of surfaces. Darts as the fundamental elements of the 2-
Gmap are linked together by involution functions. For ex-
ample in Fig. 1, α0(21) = 22, α1(21) = 10 and α2(21) =
23.

Definition 3 (i-cell) Let G = (D, α0, ..., αn) be an n-
Gmap, d ∈ D, and i ∈ {0, ..., n}. The i-dimensional cell
(or i-cell) containing d is:

ci(d) = < α0, ..., αi−1, αi+1, ..., αn > (d) (1)
2self-inverse permutations

Figure 1. An example of a 2-Gmap

where

1. ⟨α1, α2⟩(d) denotes the propagation of (α∗
1, α

∗
2)

∗(d)
and identifies the 0-cell (a point), the eight darts sur-
rounding C in Fig. 1.

2. ⟨α0, α2⟩(d) denotes the propagation of (α∗
0, α

∗
2)

∗(d)
and identifies the 1-cell consisting of the four darts be-
tween B and C in Fig. 1.

3. ⟨α0, α1⟩(d) denotes the propagation of the orbit
(α∗

0, α
∗
1)

∗(d) and identifies the 2-cell between A, B,
C and D in Fig. 1.

Based on the definition 3, in Fig. 1, c0(22) =
{22, 24, 41, 43, 27, 25, 38} means this set of darts repre-
sents the 0-cell of the d = 22. In addition, the set
{22, 21, 23, 24} and the set {22, 21, 10, 9, 1, 2, 37, 38} rep-
resent 1-cell and 2-cell corresponding to d = 22, respec-
tively.

2. Corresponding graph of a 2-Gmap
Let G be a corresponding graph of a 2-Gmap. 0-cells

and 1-cells of the 2-Gmap correspond to the vertices and
edges of G, respectively. The 2-cells of the 2-Gmap cor-
respond to the faces of degree 4 in the G. Fig. 2 shows G
as the corresponding graph of the 2-Gmap of Fig. 1. Each
edge of G consists of two half-edges or darts. There are
three involutions, α0, α1 and α2 encoding the relationships
between darts (Fig. 3). To store the involutions one may
consider an array of darts encoding each involution. How-
ever, we introduce specific encoding such that only one of
these three involutions, i.e. α1, explicitly be stored in the
1D array of darts. The remaining two involutions, α

0
and

α2, are implicitly encoded.
Assume G consists of M by N vertices containing nd =

2× 2(M +N) + 2× (2MN −M −N) darts. The first
term, 2 × 2(M + N), indicates the number of darts in the
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Figure 2. Corresponding graph G of a 2-Gmap

Figure 3. Array of darts in the 2-Gmap of Fig. 2

boundary where α2(k) = k and k ∈ [1, 2 × 2(M + N)].
In Fig. 2 these darts are indicated by numbers 1 to 20. The
second term, 2×(2MN−M−N), illustrates the remaining
darts where α2(4k+1) = 4k+3 and α2(4k+2) = 4k+4
where k ∈ [(2 × 2(M + N)) + 1, nd]. In this manner, α2

is implicitly encoded. In Fig. 2, these darts are indicated by
numbers 21 to 48. Furthermore, we consider α0(2k − 1) =
2k, where k ∈ [1, nd/2]. Therefore, the α0 can be implicitly
encoded as well.

2.1. Edge Classification

A multi-labeled image consists of different labels where
each label represents an object (connected component). In
the neighborhood graph of an input image, each connected
component (CC) consists of a set of vertices with the same
label (color). In this regard, we partition the edges of the
neighborhood graph into two categories: intra-CC and inter-
CCs as follows:

Definition 4 Intra-CC edge: an edge e = (u, v) is intra-
CC iff g(u) = g(v).

Definition 5 Inter-CCs edge: an edge e = (u, v) is inter-
CCs iff g(u) ̸= g(v).

Based on the definitions above, the contrast of an intra-CC
edge is equal to zero, c(e) = 0. We show the intra-CC edge
by e0 ∈ E0. On the other hand, the contrast of an inter-CCs
edge is larger than zero, c(e) > 0. The inter-CCs edge is
shown by ei ∈ Ei, i ∈ N. Fig. 4 illustrates an example of
multi-labeled image containing 4 CCs where each CC has
a different color. We illustrate the E0 and Ei edges with

black and red color, respectively. The edges are partitioned
as follows:

E = E0 ∪ Ei (2)

2.2. Selecting the CKs

Selecting the CKs is the main procedure in building the
irregular pyramid. In construction of the pyramid, a CC at
the base level will be reduced into a single vertex at top of
the pyramid. In other words, all vertices of a CC will be
contracted through the pyramid until to reach a correspond-
ing surviving vertex at the top level. To this aim, we select
the CKs only from the E0 edges. In addition, in order to
select a unique set of CKs, a total order is used over the
indices of vertices [1, 2]. Consider the corresponding graph
G of the 2-Gmap with M by N vertices. Let (1, 1) be the
coordinate of the vertex at the upper-left corner and (M,N)
at the lower-right corner. The vertices of G receive a unique
index as follows:

Idx : [1,M ]× [1, N ] 7→ [1,M ·N ] ⊂ N (3)
Idx(r, c) = (c− 1) ·M + r (4)

The total order has two main properties [8]. First, any two
elements (indices of vertices) are comparable. Second, ev-
ery subset of vertices has one minimum and one maximum.
Since the CKs are selected from E0, a neighborhood N (v)
is defined as follows [1]:

N (v) = {v} ∪ {w ∈ V |e0 = (v, w) ∈ E0} (5)

If the neighborhood has at least one member (|N (v)| > 1),
then the surviving vertex is selected as follows [1]:

vs = argmax{Idx(vs)| vs ∈ N (v), |N (v)| > 1} (6)

Because there is only one maximum number in every subset
of the total order, there is only one unique surviving vertex
for each non-surviving vertex.

3. Redundant edges in multi-labeled images
Graphs as a versatile representative tool may have many

unnecessary edges [1, 2]. The definition of these unneces-
sary edges is different based on the specific application. In
this paper, we study the redundant edges in multi-labeled
images. In particular, a new formalism is defined to detect
the redundant edges in the hierarchical structure of the ir-
regular pyramid.
In constructing the irregular pyramid [6, 10], the neighbor-
hood graph of an input image forms the base level of the
pyramid. To reach the smaller graph at the upper level, a
set of vertices are selected for contractions. The contrac-
tion operation reduces the number of vertices and edges in
the resulting graph. The resulting graph may have empty
self-loops or double edges that we define later as redundant
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Figure 4. Edge classification in a 3×4 multi-labeled neighborhood
graph.

edges. The simplification procedure removes these redun-
dant edges after the contractions. The edge contraction and
edge removal are consecutively performed till the pyramid
reaches to its top level [11,12]. However, the simplification
procedure can be performed before the contraction opera-
tion [4] where it facilitates the construction of the irregular
pyramid.

In [1,4] the redundant edges in binary images are defined
as follows:

Definition 6 (Redundant-Edge (RE)) In an empty face,
the non-oriented edge incident to the vertex with lowest Idx
is redundant iff:

• The empty face is bounded by only non-oriented edges
with the same contrast value.

• The empty face is bounded by non-oriented edges with
the same contrast value and oriented edges.

By defining the new edge classification in Sec 2.1, the def-
inition of redundant edges of binary images would be valid
for the corresponding graph of the multi-labeled image.
Fig. 5 shows all possible configurations of E0 and Ei in
a face of degree 4 in the grid structure. The right column of
this figure illustrates the resulting graph after the edge con-
traction. The RE after the contraction are either empty self
loops or one of the double edges of a face of degree 2.

4. Removing redundant 1-cells
In the previous section, it was shown that the RE can

be predicted before constructing the pyramid. Since these
RE have no rules in pyramid construction, they can be re-
moved without harming the structure. Therefore, removing
the RE reduces the memory space of the pyramid. In a bi-
nary image it is proved that up to 50% of the edges are re-
dundant [4]. Considering the Ei edges as the category of

Figure 5. The configuration of all possible redundant edges in a
face of degree 4.

E1 edges, it is concluded that the upper bound of the RE in
the multi-labeled images is 50% as well.

Having sufficient independent processing elements, the
redundant edges are removed with parallel O(1) complex-
ity [3,4]. To this aim, a set of independent edges (darts) are
selected to be removed at the same time. By definition, two
edges not sharing an endpoint are considered as indepen-
dent edges [4]. Therefore, redundant edges or equivalently
redundant 1-cells in the 2-Gmap are removed in a constant
time.
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#Images size |REµ| std(|RE|)
RE 120 1350× 1142 48.43% 1.04

Table 1. The amount of redundant edges (RE) in multi-labeled
image.

5. Results

A 2-Gmap is completely defined by encoding its αi, i =
0, 1, 2 involutions. We have shown in Sec .2 that by only
preserving the α1 darts the 2-Gmap is completely encoded.
By using the canonical encoding [17], the memory con-
sumption is equal to the size of the initial generalized map
independent to the number of pyramid’s level. To build up
the whole pyramid and use only darts at the base level, the
history of contractions is preserved in a 1D array of darts.
Two operations of the pyramid, edge contraction and edge
removal, modify the α1 while the α0 and α2 do not change
in the entire pyramid. By detecting the redundant edges
(darts), we put all the redundant darts on the left side of the
array. These redundant darts have no role in constructing
the pyramid. Fig. 6 shows an example of a 2-Gmap where
the array of α1(d) encodes the entire of the 2-Gmap.

The redundant edges are illustrated by dashed-line in
Fig. 6-b. These redundant edge (darts) are highlighted in the
array of Fig. 6-d. By putting the redundant darts into the left
side of the array, the remaining darts preserve the structure
of the simplified 2-Gmap. As it was proved (Sec .4) up to
50% of the whole darts in a 2-Gmap would be redundant.

To exploit the advantage of the proposed method in a
real application, we calculate the percentage of RE through
a labeled 2D cross slice of a leaf scan (Fig. 7). The multi-
labeled input image (Fig. 7) has six different labels illus-
trating different regions inside the leaf. The size of the
original 2D slice is 2560 × 2560 and there are 2160 slices
in the volume of the 3D imaging. After cropping the un-
necessary parts of the original image, the proposed algo-
rithm was tested over 120 multi-labeled images3 with the
size 1350× 1142.

Tab .1 displays the outcome of the proposed method.
The first column shows number of images (#Images) of our
multi-label data base. The second column displays the size
of the 2D input image. The last two columns give the aver-
age amount of RE (’|REµ|’) along with the standard devia-
tion (’std(|RE|)’) over all images. The results show that the
proposed method enormously reduces the size of the input
image approximately by half.

3The images are from the Water’s gateway to heaven project,
https://waters-gateway.boku.ac.at/

6. Conclusion
The paper presents a novel formalism to define redun-

dant 1-cells in the 2-Gmap of a multi-labeled image. It de-
fines a corresponding graph of the 2-Gmap and detects the
redundant edges in the graph. The obtained formalism then
translated into the 2-Gmap structure where the redundant 1-
cells are detected. We proved that up to half of the whole
1-cells (edges) would be redundant in theory. Having suffi-
cient processing elements by employing the set of indepen-
dent edges, all the redundant edges (1-cells) are removed in
constant complexity. The experiments show almost 48% of
the 1-cells in the 2-Gmap are structurally redundant on aver-
age. By removing these redundant 1-cells the memory con-
sumption is dramatically reduced. Moreover, we introduced
an efficient encoding of involutions in the 2-Gmap where
the two third of the involutions can be implicitly encoded.
Finally, using the generalized map structure the proposed
method can be extended to higher dimensional n-Gmaps.
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